
FsQuass Documentation
Release 0.1.0

Dmitri Lebedev

October 22, 2012

CONTENTS

1 Why another filesystem library? 1

2 Installation 3

3 What does the name mean? 5

4 Contents 7
4.1 Quick Tour . 7
4.2 fsquass Package . 10

5 Indices and tables 15

Python Module Index 17

i

ii

CHAPTER

ONE

WHY ANOTHER FILESYSTEM
LIBRARY?

None of them lets you work with files and paths in an elegant way. By elegant I mean as jQuery lets you work with
DOM. A jQuery for filesystem is not a new idea, though: someone has written fsquery library for Node.js. There is a
good pyFileSystem library that supports different file systems (like ssh, memory, ftp).

I rather needed a path traversing tool than filesystem.

Let’s say, I want to find photos (*.jp[e]g) in my pictures folders for 2010 and 2011. The folders for those days end
with ’repairs’.

from fsquass import Fs
photos = Fs(’/home/siberiano/Pictures/{2011,2010} *repairs *.jp?g:ignorecase’)

Note how syntax is similar to what we’re used to in file systems:

• spaces in path stand for descendant, like in CSS

• curly braces {x,y} mean different masks of a name

• stars and question marks work like in command line

• pseudo-classes (:ignorecase) work like in CSS

Now I can proceed, say, find the folders of these files:

photos.parents().find(’*.txt’)
photos.filter(’DCIM*’)

As you can see, it’s quite similar to jQuery. But unlike jQuery, Python’s set classes support set operations:

photos.parents().children() - photos

Everything you can do with set, you can do with Fs objects as well.

1

http://jquery.com
http://packages.python.org/fs/
http://docs.python.org/library/stdtypes.html#set

FsQuass Documentation, Release 0.1.0

2 Chapter 1. Why another filesystem library?

CHAPTER

TWO

INSTALLATION

Clone it and install with setuptools:

hg clone https://bitbucket.org/siberiano/fsquass
cd fsquass
python setup.py install

3

FsQuass Documentation, Release 0.1.0

4 Chapter 2. Installation

CHAPTER

THREE

WHAT DOES THE NAME MEAN?

It’s called so to give it a unique name and flavour. ‘Quass’ has common part with ‘query’, but means kvass.

5

http://en.wikipedia.org/wiki/Kvass

FsQuass Documentation, Release 0.1.0

6 Chapter 3. What does the name mean?

CHAPTER

FOUR

CONTENTS

4.1 Quick Tour

4.1.1 As Commandline Tool

Once you install FsQuass, it can work as command line tool. It’s almost like GNU find, except that it only searches
and does not try to be a Swiss knife. There are no options in it:

$ fsquass ’/home/*’
/home/siberiano
/home/guest

note It’s better to quote the arguments since Bash may try to convert masks (*, .) for you.

If you need to do something with the found files, use xargs:

$ fsquass ’/home .bashrc’ | xargs cat

This prints the contents of all .bashrc files Descendants of user folders. As a quick tip on xargs, to pass file path in the
middle of a command, use curly braces:

$ fsquass ’/home .bashrc’ | xargs -I ’{}’ ln -S {} /tmp

To each found .bashrc this will make a symlink in /tmp.

4.1.2 As a Python Module

The Fs class (stands for files set), like jQuery, searches by string and also inherits the API of set class with all set
operations: union, intersection, add, remove, etc.

from fsquass import Fs
Fs(’/home .bashrc’) - Fs(’~/.bashrc’) # similar to jQuery.not()

File sets are iterable and consist of File or Dir instances. They also can generate strings:

for project in Fs(’~/projects/*’):
print project

for path in Fs(’~/projects/*’): # a generator of string paths
print path

7

http://en.wikipedia.org/wiki/Find
http://docs.python.org/library/stdtypes.html#set

FsQuass Documentation, Release 0.1.0

4.1.3 Syntax

The syntax is essentially Unix filename patterns + some powerful extensions. Patterns work via fnmatch module.
The special characters used in shell-style wildcards are: *, ? (any single character), [abc] (a, b or c), [!abc]
anything but them. Some simple examples:

folder/folder/file.py[co]
folder/*/*.txt
/etc/hosts
/var/log/*.log
./file
file
../another_folder/file

The two latter examples are the same.

But here come some extensions: you can go a level up from a file:

fsquass/setup.py/..

This expression will evaluate to fsquass, but only if setup.py is present. This is useful if you need folders to
contain specific children.

Descendants

It works like in CSS:

~ *.py

will search for *.py anywhere in the home folder, at any folders depth.

attention This kind of search is expensive since it makes the program go through all the directory tree
down from ~. Make such searches as narrow as possible if you can: */projects/django

*.py.

You can make several such searches:

~/projects templates *.haml

Scans projects folder for templates, then scans each of those for *.haml.

The second part of descendant can be multi-level:

~/projects templates/*.haml

Use backslash to write a space in a name. Use double backslash if you need to escape the backslash itself:

~/project\ description/*

Yet there is no syntax for the opposite search, for random number of levels upwards.

Pseudo-Classes

Similar to those in CSS, they are written in the end or instead of a pattern, and either filter filesystem objects by type,
or modify the pattern’s properties:

Pseudo-Class Meaning
:file object is a file
:dir object is a directory
:ignorecase makes search case-insensitive

8 Chapter 4. Contents

http://docs.python.org/library/fnmatch.html#fnmatch

FsQuass Documentation, Release 0.1.0

Examples:

~/.*:dir
~/*:file
/home/:dir
/:dir
~/Pictures *.jpg:ignorecase

Sub-Patterns

In Unix shell, you can do this: mkdir project/{apps,templates,static}. The same works in fsquass.
Between slashes, you can use curly braces to write multiple options:

/home/{siberiano,guest}/.bashrc
~/Pictures {*.jpeg:ignorecase,*.jpg:ignorecase}

note Pseudo-classes must be inside the curly braces.

Multiple Patterns

If you need to find objects with completely different paths or patterns, write multiple expressions separated with a
colon:

/etc/hosts;~/.my_hosts;~/test.txt

Put a backslash to a colon if it’s a part of a name:

strange\;name1;strange\;name2

4.1.4 Set Operations

Fs inherits from set and suspports all the set methods.

Fs(’./*.py’) | Fs(’./*.pyc’) # union
Fs(’. {*.rst,*.txt}’) - Fs(’./build *.txt’) # not
Fs(’*.py’) & Fs(’__*__.py’) # intersection
Fs(’*.py’) ^ Fs(’__*__.py’) # xor (union not intersection)

filter is just like interection, but is faster since it doesn’t search files on disk.

Fs(’*.py’).filter(’__*__.py’)

4.1.5 Traversing

Having one set of files you can generate another set relative of it:

find Python scripts and then their parent folders that start with ’django’
django_projects = Fs(’~/projcets *.py’).parents(’django*’)

inside those find __init__.py at top level
django_projects.children(’__init__.py’)

or at any depth
django_projects.find(’. __init__.py’)

4.1. Quick Tour 9

http://docs.python.org/library/stdtypes.html#set

FsQuass Documentation, Release 0.1.0

find doc roots inside them, by relative path (no recursive search)
django_projects.find(’docs/source/index.*’)

django_projects.siblings()

4.1.6 Files Manipulation

Currently Fs supports

• linkTo

• symlinkTo

4.2 fsquass Package

FsQuass is a filesystem query and traversing library, a pythonic jQuery for filesystem.

Still work in progress.

class fsquass.__init__.Fs(nodes=None)
Bases: set

Files set. Is a set of File and Dir instances with traversal methods. Besides the methods inherited from
set, it has some methods and properties specific to file systems.

nodes can be a string or an iterable. of File and Dir instances.

If nodes is a string, it’s treated differently depending on what it starts with:

•/, files are matched from those in the root directory and further, without scanning the whole filesystem.

•./, the next name will be searched inside the current directory, without recursive scanning.

•~, home folder will be opened

•~/, home folder will be opened, and it’s children will be matched, without recursive scanning.

A space is treated like in CSS, a recursive search for descendants. E.g.

Fs(’/home/user tests/__init__.py’)

will

•find /home/user,

•then recursively scan both for files and directories named tests,

•then will search for __init__.py inside those directories, but not deeper.

Note: Recursive scans can be expensive. If you

children(pattern=None)
Returns a set of children of all the set items filtered by pattern.

closest(pattern)
Finds the closest ancestors by pattern.

exclude(pattern)
Exclude items that match pattern.

10 Chapter 4. Contents

http://docs.python.org/library/stdtypes.html#set
http://docs.python.org/library/stdtypes.html#set
http://docs.python.org/library/stdtypes.html#set

FsQuass Documentation, Release 0.1.0

filter(pattern)
Filters items_list by patten.

Filtering a set of paths is equal to an intersection of the set and of a set found by pattern:

dirs = Fs(’/home/siberiano;/home;/tmp;/tmp/siberiano’)
dirs.filter(’siberiano’) == dirs & Fs(’/’).find(’. siberiano’)

find(pattern)
Searches by pattern inside the set items. Returns a new Fs instance. E.g. if we have a set fs of these
paths:

/home/user/
/root

fs.find(’.bashrc’) will probably output:

/home/user/.bashrc
/root/.bashrc

If you need to find multiple paths, separate them with semicolon:

Fs(’/home/siberiano’).find(’.bashrc;Work/project/templates base.haml’)

Will search for .bashrc file in my homefolder (but not deeper) and inside ~/Work/project/templates will
recursively search for base.haml files.

To avoid accidental scanning of the entire filesystem, recursive search is made harder. Use dot and space
in the beginning if you need it anyway:

scan the entire filesystem for ’siberiano’
Fs(’/’).find(’. siberiano’)
scans for files & directories named ’project’ inside Work
Fs(’/home/siberiano/Work’).find(’. project’)

first()
Returns the first item from the set. A shortcut for iter(fs).next()

linkTo(target, multiple_targets=False, name_callback=None)
Makes a hard link to all the set members in target folder.

•target must be a set of 1 or more directories (Dir instances).

•if multiple_targets parameter is True, links will be made in all the target folders. If multiple_targets
is False, then will link in the first target folder only.

Optional name_callback should work like this:

def name_callback(source, target):
source & target are Fs instances with 1 member each
return source, target

parents()
Returns a set of parents of all the items, e.g. for

/home/user/.bashrc
/home/user/.hgrc
/tmp/test
/tmp

parents will be

4.2. fsquass Package 11

FsQuass Documentation, Release 0.1.0

/home/user
/tmp
/

paths
A generator of paths of all the items.

siblings(pattern=None)
Finds all the siblings of the files in set, filtered by pattern. The result will not include any files of the
original set.

symlinkTo(target, multiple_targets=False, name_callback=None)
Makes a symbolic link in target folder like Fs.linkTo()

class fsquass.__init__.Dir(full_path)
Bases: fsquass.__init__.File

Directory. Returns its directories and files in children() method.

•Is iterable:

for i in Dir(’/home/siberiano’):
print i

will print files and directories in the folder.

This allows using such tricks as using a Dir to get a Fs of it’s children:

>>> d = Dir(’/’)
>>> Fs(d) == d.children()
True

•Can check if contains another File or Dir:

>>> Dir(’/home’) in Dir(’/’)
True
>>> Dir(’/tmp’) in Dir(’/home’)
False

children(pattern=None)
Lists the directory and returns Fs of the files, filtered by pattern.

delete(sure=False)
Deletes the directory with all files and directories in it if sure is True. If you managed to call it like this,
don’t blame the library for any lost data.

open(*args, **kwargs)
Raises TypeError, since directories can’t be opened like files.

class fsquass.__init__.File(full_path)
Bases: object

A file or a directory. Contains self.path, and if an object with the same absolute path is instantiated, an existing
item is returned. If full_path is unaccessible, EnvironmentError is raised.

basename
String basename of the file.

children(pattern=None)
Returns an Fs of child nodes. Makes sense in Dir only, but put here for compatibility.

12 Chapter 4. Contents

FsQuass Documentation, Release 0.1.0

delete(sure=False)
Deletes the file if sure is True. If you managed to call it like this, don’t blame the library for any lost data.

open(*args, **kwargs)
Wrapper to Python open().

parent
Returns an Fs with the parent directory.

4.2. fsquass Package 13

FsQuass Documentation, Release 0.1.0

14 Chapter 4. Contents

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

15

FsQuass Documentation, Release 0.1.0

16 Chapter 5. Indices and tables

PYTHON MODULE INDEX

f
fsquass.__init__, 10

17

	Why another filesystem library?
	Installation
	What does the name mean?
	Contents
	Quick Tour
	fsquass Package

	Indices and tables
	Python Module Index

