

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	FsQuass 0.1.0 documentation

FsQuass, filesystem query and traversing

Why another filesystem library?

None of them lets you work with files and paths in an elegant way. By elegant I mean as jQuery [http://jquery.com] lets you work with DOM. A jQuery for filesystem is not a new idea, though: someone has written fsquery library for Node.js. There is a good pyFileSystem [http://packages.python.org/fs/] library that supports different file systems (like ssh, memory, ftp).

I rather needed a path traversing tool than filesystem.

Let’s say, I want to find photos (*.jp[e]g) in my pictures folders for 2010 and 2011. The folders for those days end with 'repairs'.

from fsquass import Fs
photos = Fs('/home/siberiano/Pictures/{2011,2010} *repairs *.jp?g:ignorecase')

Note how syntax is similar to what we’re used to in file systems:

	spaces in path stand for descendant, like in CSS

	curly braces {x,y} mean different masks of a name

	stars and question marks work like in command line

	pseudo-classes (:ignorecase) work like in CSS

Now I can proceed, say, find the folders of these files:

photos.parents().find('*.txt')
photos.filter('DCIM*')

As you can see, it’s quite similar to jQuery. But unlike jQuery, Python’s set classes support set operations:

photos.parents().children() - photos

Everything you can do with set [http://docs.python.org/library/stdtypes.html#set], you can do with Fs objects as well.

Installation

Clone it and install with setuptools:

hg clone https://bitbucket.org/siberiano/fsquass
cd fsquass
python setup.py install

What does the name mean?

It’s called so to give it a unique name and flavour. ‘Quass’ has common part with ‘query’, but means kvass [http://en.wikipedia.org/wiki/Kvass].

Contents

	Quick Tour
	As Commandline Tool

	As a Python Module

	Syntax

	Set Operations

	Traversing

	Files Manipulation

	fsquass Package

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Dmitri Lebedev.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FsQuass 0.1.0 documentation

Quick Tour

As Commandline Tool

Once you install FsQuass, it can work as command line tool. It’s almost like GNU find [http://en.wikipedia.org/wiki/Find], except that it only searches and does not try to be a Swiss knife. There are no options in it:

$ fsquass '/home/*'
/home/siberiano
/home/guest

	note:	It’s better to quote the arguments since Bash may try to convert masks (*, .) for you.

If you need to do something with the found files, use xargs:

$ fsquass '/home .bashrc' | xargs cat

This prints the contents of all .bashrc files Descendants of user folders. As a quick tip on xargs, to pass file path in the middle of a command, use curly braces:

$ fsquass '/home .bashrc' | xargs -I '{}' ln -S {} /tmp

To each found .bashrc this will make a symlink in /tmp.

As a Python Module

The Fs class (stands for files set), like jQuery, searches by string and also inherits the API of set [http://docs.python.org/library/stdtypes.html#set] class with all set operations: union, intersection, add, remove, etc.

from fsquass import Fs
Fs('/home .bashrc') - Fs('~/.bashrc') # similar to jQuery.not()

File sets are iterable and consist of File or Dir instances. They also can generate strings:

for project in Fs('~/projects/*'):
 print project

for path in Fs('~/projects/*'): # a generator of string paths
 print path

Syntax

The syntax is essentially Unix filename patterns + some powerful extensions. Patterns work via fnmatch [http://docs.python.org/library/fnmatch.html#fnmatch] module. The special characters used in shell-style wildcards are: *, ? (any single character), [abc] (a, b or c), [!abc] anything but them. Some simple examples:

folder/folder/file.py[co]
folder/*/*.txt
/etc/hosts
/var/log/*.log
./file
file
../another_folder/file

The two latter examples are the same.

But here come some extensions: you can go a level up from a file:

fsquass/setup.py/..

This expression will evaluate to fsquass, but only if setup.py is present. This is useful if you need folders to contain specific children.

Descendants

It works like in CSS:

~ *.py

will search for *.py anywhere in the home folder, at any folders depth.

	attention:	This kind of search is expensive since it makes the program go through all the directory tree down from ~. Make such searches as narrow as possible if you can: */projects/django *.py.

You can make several such searches:

~/projects templates *.haml

Scans projects folder for templates, then scans each of those for *.haml.

The second part of descendant can be multi-level:

~/projects templates/*.haml

Use backslash to write a space in a name. Use double backslash if you need to escape the backslash itself:

~/project\ description/*

Yet there is no syntax for the opposite search, for random number of levels upwards.

Pseudo-Classes

Similar to those in CSS, they are written in the end or instead of a pattern, and either filter filesystem objects by type, or modify the pattern’s properties:

	Pseudo-Class
	Meaning

	:file
	object is a file

	:dir
	object is a directory

	:ignorecase
	makes search case-insensitive

Examples:

~/.*:dir
~/*:file
/home/:dir
/:dir
~/Pictures *.jpg:ignorecase

Sub-Patterns

In Unix shell, you can do this: mkdir project/{apps,templates,static}. The same works in fsquass. Between slashes, you can use curly braces to write multiple options:

/home/{siberiano,guest}/.bashrc
~/Pictures {*.jpeg:ignorecase,*.jpg:ignorecase}

	note:	Pseudo-classes must be inside the curly braces.

Multiple Patterns

If you need to find objects with completely different paths or patterns, write multiple expressions separated with a colon:

/etc/hosts;~/.my_hosts;~/test.txt

Put a backslash to a colon if it’s a part of a name:

strange\;name1;strange\;name2

Set Operations

Fs inherits from set [http://docs.python.org/library/stdtypes.html#set] and suspports all the set methods.

Fs('./*.py') | Fs('./*.pyc') # union
Fs('. {*.rst,*.txt}') - Fs('./build *.txt') # not
Fs('*.py') & Fs('__*__.py') # intersection
Fs('*.py') ^ Fs('__*__.py') # xor (union not intersection)

filter is just like interection, but is faster since it doesn’t search files on disk.

Fs('*.py').filter('__*__.py')

Traversing

Having one set of files you can generate another set relative of it:

find Python scripts and then their parent folders that start with 'django'
django_projects = Fs('~/projcets *.py').parents('django*')

inside those find __init__.py at top level
django_projects.children('__init__.py')

or at any depth
django_projects.find('. __init__.py')

find doc roots inside them, by relative path (no recursive search)
django_projects.find('docs/source/index.*')

django_projects.siblings()

Files Manipulation

Currently Fs supports

	linkTo

	symlinkTo

 Copyright 2012, Dmitri Lebedev.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	FsQuass 0.1.0 documentation

fsquass Package

FsQuass is a filesystem query and traversing library, a pythonic jQuery for filesystem.

Still work in progress.

	
class fsquass.__init__.Fs(nodes=None)[source]

	Bases: set [http://docs.python.org/library/stdtypes.html#set]

Files set. Is a set [http://docs.python.org/library/stdtypes.html#set] of File and Dir instances with traversal methods. Besides the methods inherited from set [http://docs.python.org/library/stdtypes.html#set], it has some methods and properties specific to file systems.

nodes can be a string or an iterable. of File and Dir instances.

If nodes is a string, it’s treated differently depending on what it starts with:

	/, files are matched from those in the root directory and further, without scanning the whole filesystem.

	./, the next name will be searched inside the current directory, without recursive scanning.

	~, home folder will be opened

	~/, home folder will be opened, and it’s children will be matched, without recursive scanning.

A space is treated like in CSS, a recursive search for descendants. E.g.

Fs('/home/user tests/__init__.py')

will

	find /home/user,

	then recursively scan both for files and directories named tests,

	then will search for __init__.py inside those directories, but not deeper.

Note: Recursive scans can be expensive. If you

	
children(pattern=None)[source]

	Returns a set of children of all the set items filtered by pattern.

	
closest(pattern)[source]

	Finds the closest ancestors by pattern.

	
exclude(pattern)[source]

	Exclude items that match pattern.

	
filter(pattern)[source]

	Filters items_list by patten.

Filtering a set of paths is equal to an intersection of the set and of a set found by pattern:

dirs = Fs('/home/siberiano;/home;/tmp;/tmp/siberiano')
dirs.filter('siberiano') == dirs & Fs('/').find('. siberiano')

	
find(pattern)[source]

	Searches by pattern inside the set items. Returns a new Fs instance. E.g. if we have a set fs of these paths:

/home/user/
/root

fs.find('.bashrc') will probably output:

/home/user/.bashrc
/root/.bashrc

If you need to find multiple paths, separate them with semicolon:

Fs('/home/siberiano').find('.bashrc;Work/project/templates base.haml')

Will search for .bashrc file in my homefolder (but not deeper) and inside ~/Work/project/templates will recursively search for base.haml files.

To avoid accidental scanning of the entire filesystem, recursive search is made harder. Use dot and space in the beginning if you need it anyway:

scan the entire filesystem for 'siberiano'
Fs('/').find('. siberiano')
scans for files & directories named 'project' inside Work
Fs('/home/siberiano/Work').find('. project')

	
first()[source]

	Returns the first item from the set. A shortcut for iter(fs).next()

	
linkTo(target, multiple_targets=False, name_callback=None)[source]

	Makes a hard link to all the set members in target folder.

	target must be a set of 1 or more directories (Dir instances).

	if multiple_targets parameter is True, links will be made in all the target folders. If multiple_targets is False, then will link in the first target folder only.

Optional name_callback should work like this:

def name_callback(source, target):
 # source & target are Fs instances with 1 member each
 return source, target

	
parents()[source]

	Returns a set of parents of all the items, e.g. for

/home/user/.bashrc
/home/user/.hgrc
/tmp/test
/tmp

parents will be

/home/user
/tmp
/

	
paths[source]

	A generator of paths of all the items.

	
siblings(pattern=None)[source]

	Finds all the siblings of the files in set, filtered by pattern. The result will not include any files of the original set.

	
symlinkTo(target, multiple_targets=False, name_callback=None)[source]

	Makes a symbolic link in target folder like Fs.linkTo()

	
class fsquass.__init__.Dir(full_path)[source]

	Bases: fsquass.__init__.File

Directory. Returns its directories and files in children() method.

	Is iterable:

for i in Dir('/home/siberiano'):
 print i

will print files and directories in the folder.

This allows using such tricks as using a Dir to get a Fs of it’s children:

>>> d = Dir('/')
>>> Fs(d) == d.children()
True

	Can check if contains another File or Dir:

>>> Dir('/home') in Dir('/')
True
>>> Dir('/tmp') in Dir('/home')
False

	
children(pattern=None)[source]

	Lists the directory and returns Fs of the files, filtered by pattern.

	
delete(sure=False)[source]

	Deletes the directory with all files and directories in it if sure is True. If you managed to call it like this, don’t blame the library for any lost data.

	
open(*args, **kwargs)[source]

	Raises TypeError, since directories can’t be opened like files.

	
class fsquass.__init__.File(full_path)[source]

	Bases: object

A file or a directory. Contains self.path, and if an object with the same absolute path is instantiated, an existing item is returned. If full_path is unaccessible, EnvironmentError is raised.

	
basename[source]

	String basename of the file.

	
children(pattern=None)[source]

	Returns an Fs of child nodes. Makes sense in Dir only, but put here for compatibility.

	
delete(sure=False)[source]

	Deletes the file if sure is True. If you managed to call it like this, don’t blame the library for any lost data.

	
open(*args, **kwargs)[source]

	Wrapper to Python open().

	
parent[source]

	Returns an Fs with the parent directory.

 Copyright 2012, Dmitri Lebedev.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	FsQuass 0.1.0 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 fsquass	

 	
 	
 fsquass.__init__	

 Copyright 2012, Dmitri Lebedev.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	FsQuass 0.1.0 documentation

Index

 B
 | C
 | D
 | E
 | F
 | L
 | O
 | P
 | S

B

 	

 	basename (fsquass.__init__.File attribute)

C

 	

 	children() (fsquass.__init__.Dir method)

 	

 	(fsquass.__init__.File method)

 	(fsquass.__init__.Fs method)

 	

 	closest() (fsquass.__init__.Fs method)

D

 	

 	delete() (fsquass.__init__.Dir method)

 	

 	(fsquass.__init__.File method)

 	

 	Dir (class in fsquass.__init__)

E

 	

 	exclude() (fsquass.__init__.Fs method)

F

 	

 	File (class in fsquass.__init__)

 	filter() (fsquass.__init__.Fs method)

 	find() (fsquass.__init__.Fs method)

 	

 	first() (fsquass.__init__.Fs method)

 	Fs (class in fsquass.__init__)

 	fsquass.__init__ (module)

L

 	

 	linkTo() (fsquass.__init__.Fs method)

O

 	

 	open() (fsquass.__init__.Dir method)

 	

 	(fsquass.__init__.File method)

P

 	

 	parent (fsquass.__init__.File attribute)

 	parents() (fsquass.__init__.Fs method)

 	

 	paths (fsquass.__init__.Fs attribute)

S

 	

 	siblings() (fsquass.__init__.Fs method)

 	

 	symlinkTo() (fsquass.__init__.Fs method)

 Copyright 2012, Dmitri Lebedev.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_modules/fsquass/__init__.html

 Navigation

 		
 index

 		
 modules |

 		FsQuass 0.1.0 documentation »

 		Module code »

 Source code for fsquass.__init__

coding: utf-8
"""
FsQuass is a filesystem query and traversing library, a pythonic jQuery for filesystem.

Still work in progress.
"""
from weakref import WeakValueDictionary
import os
import gettext
import logging
import re
import sys

from fnmatch import fnmatch
from functools import partial
from itertools import chain, product
from os import path
from shutil import rmtree

__version__ = '0.1.0'

_ = lambda x: x # placeholder for translation
__all__ = ['Fs', 'Dir', 'File']

def escaped_split(delimiter, string):
	"""
	Splits *string* by *delimiters* that are not escaped by backslash.
	Unescapes the strings after splitting.
	"""
	return [i.replace('\\' + delimiter, delimiter)
		for i in re.split(r'(?<![^\\]\\)' + delimiter, string)]

[docs]class Fs(set):
	"""
	Files set. Is a :py:class:`set` of :py:class:`File` and :py:class:`Dir` instances with traversal methods. Besides the methods inherited from :py:class:`set`, it has some methods and properties specific to file systems.

	nodes can be a string or an iterable. of :py:class:`File` and :py:class:`Dir` instances.

	If *nodes* is a string, it's treated differently depending on what it starts with:

	* ``/``, files are matched from those in the root directory and further, without scanning the whole filesystem.
	* ``./``, the next name will be searched inside the current directory, without recursive scanning.
	* ``~``, home folder will be opened
	* ``~/``, home folder will be opened, and it's children will be matched, without recursive scanning.

	A space is treated like in CSS, a recursive search for descendants. E.g.

	.. code-block:: python

		Fs('/home/user tests/__init__.py')

	will

	* find ``/home/user``,
	* then recursively scan both for files and directories named ``tests``,
	* then will search for ``__init__.py`` inside those directories, but not deeper.

	Note: Recursive scans can be expensive. If you
	"""

	"""
	TODO:
		* Fs.has()
		* Fs.andSelf()
	"""
	def __init__(self, nodes=None):
		if isinstance(nodes, basestring) and nodes.strip() == '/':
			nodes = [Dir('/')]

		elif isinstance(nodes, basestring):
			pattern, nodes = nodes, []
			for patterns in self._patterns(pattern):
				# if query is 'path/to/folder path/to/another' (the part after the space is descendant, not necessarily child of 'folder')
				# then patterns are [['path', 'to', 'folder'], ['path', 'to', 'another']]
				if patterns[0][0] == '' and len(patterns[0]) > 1: # '/something' becomes ['', 'something'], hence search from the fs root
					patterns[0].pop(0)
					d = Dir('/')
				elif patterns[0][0] in ('.', '~', '..'):
					d = Dir(patterns[0].pop(0))

				else: # either '/ something' (space means scanning inside fs root), or 'something/...' (which is the same)
					raise ValueError(_("Forbidden query '%s'. To do system-wide scan, use Fs('/').find('. <your query>')") % nodes)

				local_nodes = [d]
				for i, p in enumerate(patterns):
					local_nodes = Fs(local_nodes)._recursive_find(p, deeper=i > 0)

				nodes.extend(local_nodes)

		super(Fs, self).__init__(nodes or [])

[docs]	def children(self, pattern=None):
		"""
		Returns a set of children of all the set items filtered by *pattern*.
		"""
		if len(self):
			return reduce(self.__class__.__or__, (i.children(pattern) for i in self))
		return self

[docs]	def closest(self, pattern):
		"""
		Finds the closest ancestors by pattern.
		"""
		return self._get_ancestors(pattern) - self

[docs]	def filter(self, pattern):
		"""
		Filters items_list by *patten*.

		Filtering a set of paths is equal to an intersection of the set and of a set found by *pattern*:

		.. code-block:: python

			dirs = Fs('/home/siberiano;/home;/tmp;/tmp/siberiano')
			dirs.filter('siberiano') == dirs & Fs('/').find('. siberiano')

		"""
		return self._get_ancestors(pattern) & self

	@staticmethod
	def _filter_children_generator(node):
		path_sections = escaped_split(path.sep, node.path)

		def child_getter(fs):
			item = list(fs)[0]
			path_depth = 1 if item.path == '/' else len(escaped_split(path.sep, item.path))

			if path_depth < len(path_sections):
				return [File(path.sep.join(path_sections[:path_depth + 1]))]
			return []

		return child_getter

[docs]	def find(self, pattern):
		"""
		Searches by *pattern* inside the set items. Returns a new Fs instance. E.g. if we have a set ``fs`` of these paths::

			/home/user/
			/root

		``fs.find('.bashrc')`` will probably output::

			/home/user/.bashrc
			/root/.bashrc

		If you need to find multiple paths, separate them with semicolon:

		.. code-block:: python

			Fs('/home/siberiano').find('.bashrc;Work/project/templates base.haml')

		Will search for ``.bashrc`` file in my homefolder (but not deeper) and inside ~/Work/project/templates will recursively search for ``base.haml`` files.

		To avoid accidental scanning of the entire filesystem, recursive search is made harder. Use dot and space in the beginning if you need it anyway:

		.. code-block:: python

			# scan the entire filesystem for 'siberiano'
			Fs('/').find('. siberiano')
			# scans for files & directories named 'project' inside Work
			Fs('/home/siberiano/Work').find('. project')
		"""
		if pattern.strip() == '':
			raise ValueError('Search pattern must be non-empty.')

		result = Fs()
		for patterns in self._patterns(pattern):
			if patterns[0] in ([''], ['', '']):
				raise ValueError(_("Can't start search query with space. To do filesystem scan, use dot-space: '. query'"))
			for i, p in enumerate(patterns):
				if p[0] == '':
					raise ValueError(_("Can't search from root (/) inside an Fs ('%s').") % '/'.join(p))

				if i > 0 and '.' in p:
					raise ValueError(_("Can't use '.' in descendants ('%s')") % '/'.join(p))

			local_result = self
			p = patterns.pop(0)
			if p != ['.']: # '. name' is the way to scan the filesystem
				local_result = Fs(local_result._recursive_find(p, deeper=False))
			for p in patterns:
				local_result = Fs(local_result._recursive_find(p))
			result |= local_result

		return result

[docs]	def first(self):
		"""
		Returns the first item from the set. A shortcut for ``iter(fs).next()``
		"""
		return Fs(iter(self).next())

	def _get_ancestors(self, pattern):
		if not pattern:
			return self

		result = self.__class__()
		for n in self:
			for patterns in self._patterns(pattern):
				local_result = Fs('/')
				for p in patterns:
					child_getter = self._filter_children_generator(n)
					local_result = Fs(local_result._recursive_find(p, child_getter))

				result |= local_result

		return result

[docs]	def exclude(self, pattern):
		"""
		Exclude items that match pattern.
		"""
		if isinstance(pattern, basestring):
			return self - self.filter(pattern)

		if isinstance(pattern, Fs):
			return self - pattern

		raise ValueError(_('pattern must be either a string or an Fs instance. Got %s instead.') % pattern)

	def _link(self, target, multiple_targets=False, name_callback=None, link_function=os.symlink):
		if not isinstance(target, Fs):
			target = Fs(target)

		if target.filter(':dir') != target:
			raise ValueError(_("Target(s) is not a directory: %s") % target)

		if not callable(link_function):
			raise ValueError(_("Link function must be a callable."))

		for source, target_dir in product(self, target):
			if not multiple_targets:
				target = target.first()
			s, t = Fs(source), Fs(target_dir)
			if callable(name_callback):
				s, t = name_callback(s, t)
			link_function(s.pop().path, t.pop().path)

[docs]	def linkTo(self, target, multiple_targets=False, name_callback=None):
		"""
		Makes a hard link to all the set members in *target* folder.

		* target must be a set of 1 or more directories (:py:class:`Dir` instances).
		* if *multiple_targets* parameter is ``True``, links will be made in all the *target* folders. If *multiple_targets* is ``False``, then will link in the first *target* folder only.

		Optional *name_callback* should work like this:

		.. code-block:: python

			def name_callback(source, target):
				# source & target are Fs instances with 1 member each
				return source, target

		"""
		self.symlinkTo(target, multiple_targets, name_callback, os.link)

[docs]	def symlinkTo(self, target, multiple_targets=False, name_callback=None):
		"""
		Makes a symbolic link in *target* folder like :py:func:`Fs.linkTo`
		"""
		self._link(target, multiple_targets, name_callback, os.symlink)

[docs]	def parents(self):
		"""
		Returns a set of parents of all the items, e.g. for

		.. code-block:: none

			/home/user/.bashrc
			/home/user/.hgrc
			/tmp/test
			/tmp

		parents will be

		.. code-block:: none

			/home/user
			/tmp
			/
		"""
		return self.__class__(chain.from_iterable(i.parent for i in self))

	@property
[docs]	def paths(self):
		"""
		A generator of paths of all the items.
		"""
		return (i.path for i in self)

	@staticmethod
	def _pattern_level_match(pattern, item):
		"""
		Match item's basename against pattern at one level, i.e. between slashes::

			.../siberiano/...
			/tmp/...

		pattern can contain subpatterns::

			{home,tmp}
			{etc,usr,var,tmp}
			{dropbox:ignorecase,Pictures}
		"""
		find_match = re.match(r'^{([^{}]+)}$', pattern) # pattern may contain multiple subpatterns: /{home,tmp,*oot}/
		if find_match:
			subpatterns = escaped_split(',', find_match.groups()[0])
		elif re.findall(r'[^\\][\{\},]', pattern):
			raise ValueError(_('Path query string "%s" contains illegal characters') % pattern)
		else:
			subpatterns = [pattern]

		sp_func = partial(Fs._subpattern_match, item=item)
		if not any(map(sp_func, subpatterns)):
			return False

		return True

	@staticmethod
	def _patterns(pattern):
		for p in escaped_split(';', pattern):
			yield [escaped_split(path.sep, i) for i in escaped_split(' ', p)]

	def _recursive_find(self, pattern, get_children=None, deeper=True):
		"""
		Searches recursively through filesystem, both for direct children and for descendants.

		* *pattern* is a list of strings (either of which may contain subpatterns)
		* *deeper* is a flag whether this path should be searched among children (fs scan)
		* *get_children* is an optional function for the purpose of filtering.

		Normally you call :py:func:`Fs.children` and match them with *pattern*. In case you want to filter, you don't need to scan the real filesystem. Search scope is already limited to a node path (/path/to/node), which means for '/path' get_children should return '/path/to' only, without it siblings from the real hard drive. Custom get_children function that is used in :py:func:`Fs.filter` does this.
		"""
		get_children = get_children or (lambda s: s.children())

		yielder = []
		if pattern in ([], ['']):
			yielder.append(self)

		elif pattern[0] == '..':
			yielder.append(self.parents()._recursive_find(pattern[1:], get_children, False))

		else:
			for n in get_children(self):
				if deeper and isinstance(n, Dir):
					yielder.append(Fs([n])._recursive_find(pattern, get_children))

				logging.debug([n, pattern])
				r = []
				if self._pattern_level_match(pattern[0], n):
					r = [n]

				if r and len(pattern) > 1:
					r = Fs(r)._recursive_find(pattern[1:], get_children, False)

				yielder.append(r)

		for i in chain(*yielder):
			yield i

	def __repr__(self):
		return '%s([%s])' % (self.__class__.__name__, ', '.join(map(str, self)))

[docs]	def siblings(self, pattern=None):
		"""
		Finds all the siblings of the files in set, filtered by *pattern*. The result will not include any files of the original set.
		"""
		return self.parents().children(pattern) - self

	@staticmethod
	def _subpattern_match(subpattern, item):
		"""
		Matches ``item.basename`` against *subpattern*.

		* ``subpattern`` - string containing text or unix-like patterns ``?``, ``*``.
		* ``item`` - a :py:class:`File` instance.
		"""
		pseudo_classes = escaped_split(':', subpattern)
		subpattern = pseudo_classes.pop(0)
		basename = item.basename
		if 'ignorecase' in pseudo_classes:
			subpattern = subpattern.lower()
			basename = item.basename.lower()

		if subpattern and not fnmatch(basename, subpattern):
			return False # stop searching through subpatterns of current level

		if (('file' in pseudo_classes and isinstance(item, Dir)) or
			('dir' in pseudo_classes and not isinstance(item, Dir))):
			return False
		return True

[docs]class File(object):
	"""
	A file or a directory. Contains self.path, and if an object with the same absolute path is instantiated, an existing item is returned. If *full_path* is unaccessible, :exc:`EnvironmentError` is raised.
	"""

	"""
	TODO: chmod chown lchown makedirs readlink stat walk
	"""
	_data = {} # WeakValueDictionary()

	def __new__(cls, full_path):
		"""
		Normalizes path and checks if an instance for this path already exists.
		"""
		full_path = File._normalize(full_path)
		cls._assert_path(full_path)
		if path.isdir(full_path):
			cls = Dir

		if full_path not in cls._data:
			cls._data[full_path] = object.__new__(cls, full_path)

		return cls._data[full_path]

	def __init__(self, full_path):
		self.path = File._normalize(full_path)

	@staticmethod
	def _assert_path(full_path):
		"""
		Checks if path is visible, which means full_path is either of these:

		* a file (or a working and accessible symlink)
		* a symlink, wich may be broken or inaccessible
		"""
		if not(path.exists(full_path) or path.islink(full_path)):
			raise OSError(_('Path unreachable: %s') % full_path)

	@property
[docs]	def basename(self):
		"""
		String basename of the file.
		"""
		return path.basename(self.path)

[docs]	def children(self, pattern=None):
		"""
		Returns an Fs of child nodes. Makes sense in Dir only, but put here for compatibility.
		"""
		return Fs()

	def __contains__(self, other):
		if not isinstance(other, File):
			raise ValueError('Tried to compare if {0} is in {1}. {0} must be an fsquass.File instance.'.format(other, self))
		return other.path.startswith(self.path)

[docs]	def delete(self, sure=False):
		"""
		Deletes the file if *sure* is ``True``. If you managed to call it like this, don't blame the library for any lost data.
		"""
		if sure == True:
			os.remove(self.path)

	def __iter__(self):
		return []

	@staticmethod
	def _normalize(dirty_path):
		return path.abspath(path.normpath(path.expanduser(dirty_path)))

[docs]	def open(self, *args, **kwargs):
		"""
		Wrapper to Python ``open()``.
		"""
		open(self.path, *args, **kwargs)

	@property
[docs]	def parent(self):
		"""
		Returns an Fs with the parent directory.
		"""
		par = path.normpath(path.join(self.path, path.pardir))
		return Fs([Dir(par)] if par != self.path else None)

	def __repr__(self):
		return "%s('%s')" % (self.__class__.__name__, self.path)

[docs]class Dir(File):
	"""
	Directory. Returns its directories and files in children() method.

	* Is iterable:

		.. code-block:: python

			for i in Dir('/home/siberiano'):
				print i

		will print files and directories in the folder.

		This allows using such tricks as using a :py:class:`Dir` to get a :py:class:`Fs` of it's children:

		.. code-block:: python

			>>> d = Dir('/')
			>>> Fs(d) == d.children()
			True

	* Can check if contains another :py:class:`File` or :py:class:`Dir`:

		.. code-block:: python

			>>> Dir('/home') in Dir('/')
			True
			>>> Dir('/tmp') in Dir('/home')
			False
	"""
	def __init__(self, full_path):
		super(Dir, self).__init__(full_path)
		if not path.isdir(self.path):
			raise ValueError(_('path %s is not a directory') % self.path)

[docs]	def children(self, pattern=None):
		"""
		Lists the directory and returns :py:class:`Fs` of the files, filtered by *pattern*.
		"""
		try:
			filenames = os.listdir(self.path)
		except OSError:
			return Fs()
		t = partial(path.join, self.path)
		return Fs(map(File, map(t, filenames))).filter(pattern)

[docs]	def delete(self, sure=False):
		"""
		Deletes the directory with all files and directories in it if *sure* is ``True``. If you managed to call it like this, don't blame the library for any lost data.
		"""
		if sure == True:
			rmtree(self.path, ignore_errors=True)

	def __iter__(self):
		return iter(self.children())

[docs]	def open(self, *args, **kwargs):
		"""
		Raises TypeError, since directories can't be opened like files.
		"""
		raise TypeError(_("Directories can't be opened like files"))

paths = Fs(__file__).parents().parents().find('./locale').paths
#_ = gettext.translation('fsquass', ''.join(paths)).ugettext

def main(args):
	if not args:
		print _('Usage: fsquass "[search string]"\n(Enclose search string in quotes.)')
		sys.exit(1)
	try:
		found = Fs(' '.join(args))
	except KeyboardInterrupt:
		print _('Interrupted by user.')
		sys.exit(1)
	except SystemExit:
		raise
	except:
		import traceback
		if not logging.root.handlers:
			logging.basicConfig()
		skip_it = False
		exc_info = sys.exc_info()
		if hasattr(exc_info[0], "__name__"):
			exc_class, exc, tb = exc_info
			if isinstance(exc, IOError) and exc.args[0] == 32:
				# Skip 'IOError: [Errno 32] Broken pipe': often a cancelling of `less`.
				skip_it = True
			if not skip_it:
				tb_path, tb_lineno, tb_func = traceback.extract_tb(tb)[-1][:3]
				logging.error("%s (%s:%s in %s)", exc_info[1], tb_path,
					tb_lineno, tb_func)
		else: # string exception
			logging.error(exc_info[0])
		if not skip_it:
			if logging.getLogger().level <= logging.DEBUG:
				print()
				traceback.print_exception(*exc_info)
			sys.exit(1)
	for i in found:
		print i.path

	sys.exit(0)

if __name__ == '__main__':
	main(sys.argv[1:])

 © Copyright 2012, Dmitri Lebedev.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 		latest

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		FsQuass 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Dmitri Lebedev.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		FsQuass 0.1.0 documentation »

 All modules for which code is available

		fsquass.__init__

 © Copyright 2012, Dmitri Lebedev.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 		latest

